If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2-24b-64=0
a = 4; b = -24; c = -64;
Δ = b2-4ac
Δ = -242-4·4·(-64)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-40}{2*4}=\frac{-16}{8} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+40}{2*4}=\frac{64}{8} =8 $
| 31x+5=180 | | M+y=-12 | | 3=2p-3=12 | | 172+4x=172 | | 4+3(x+2)=8x | | 2x+4+2x+2x+3=180 | | (18x-2)+(13x-4)=180 | | M+y=12 | | -3(w+4)=3w-12 | | x2+13=45 | | 2/3(3x+9)=-2(2×+6) | | 10y(7)=0 | | -8x-72=24 | | 225=95+(10+9)w | | 10y+3+2y-9=12 | | -4(5p+8)=-3p+4)-p | | 4(3x-8)-5(4x-8=-24 | | 2(7n+4)=-27+7n | | 9-2y+3+10y=12 | | -2z+-5=14.36 | | -(3a-12)=48 | | 7+16i=0 | | b/3-10=-6.4 | | 30(8.75)+11t=100 | | 8+5x=-2x= | | 1/4(32-2h)=h/2 | | 7k-16=-7+4k | | 4,710=3.14*20*x | | m=8,23m= | | -4v-5=-7v+16 | | 1/8y-5/8=-7/8y-1/4 | | 15.49=3.49-4y |